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Abstract— Egocentric pose estimation is a fundamental capa-
bility for multi-robot collaborative perception in connected
autonomy, such as connected autonomous vehicles. During
multi-robot operations, a robot needs to know the relative
pose between itself and its teammates with respect to its own
coordinates. However, different robots usually observe completely
different views that contains similar objects, which leads to
wrong pose estimation. In addition, it is unrealistic to allow
robots to share their raw observations to detect overlap due
to the limited communication bandwidth constraint. In this
paper, we introduce a novel method for Non-Overlap-Aware
Egocentric Pose Estimation (NOPE), which performs egocentric
pose estimation in a multi-robot team while identifying the
non-overlap views and satifying the communication bandwidth
constraint. NOPE is built upon an unified hierarchical learning
framework that integrates two levels of robot learning: (1) high-
level deep graph matching for correspondence identification,
which allows to identify if two views are overlapping or not,
(2) low-level position-aware cross-attention graph learning for
egocentric pose estimation. To evaluate NOPE, we conduct
extensive experiments in both high-fidelity simulation and real-
world scenarios. Experimental results have demonstrated that
NOPE enables the novel capability for non-overlapping-aware
egocentric pose estimation and achieves state-of-art performance
compared with the existing methods.

I. INTRODUCTION

Multi-robot systems have attracted wide attention in recent
decades due to their scalability [1], parallelism [2], and relia-
bility [3]. A fundamental capability in multi-robot systems is
collaborative perception, which allows individual robots to
share their own perception of the environments, thus leading
to a shared situational awareness. It has lots of applications,
such as connected autonomous driving [4], [5], collaborative
simultaneous localization and mapping (SLAM) [6], [7], [8],
and multi-robot search and rescue [9], [10].

To enable efficient collaborative perception, it is essential to
achieve accurate egocentric pose estimation that estimates the
relative pose between a robot and its teammates with respect
to its own coordinate. This allows each robot to determine the
poses of its teammates, facilitating the aggregation of multi-
robot perception. As shown in Figure 1, when connected
autonomous vehicles meet at an intersection, the ego vehicle
must first estimate the poses of its collaborators before
merging their perceptions to improve situational awareness.
This is particularly crucial in urban areas where GPS is
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Fig. 1: A motivating scenario for egocentric pose estimation in
connected autonomous driving. When two connected vehicles
meet at an intersection, the ego vehicle must first estimate
the pose of its teammate before merging its perception to
enhance situational awareness. Meanwhile, it needs to address
the challenges of limited communication bandwidth and non-
overlapping views, where each vehicle observes a completely
different perspective.

unreliable or even unavailable. However, achieving accurate
egocentric pose estimation presents two key challenges. The
first challenge arises from non-overlapping views, where
different robots may observe totally different scenes while
their different observations containing similar objects (e.g.,
traffic signs). This can lead to wrong pose estimations. The
second challenge is limited communication bandwidth, which
prevents vehicles from sharing raw observations to compare
their observations to decide it they are overlapping or not.

Given the importance of egocentric pose estimation, a
variety of methods have been studied. Previous techniques
for multi-robot relative pose estimation often rely on SLAM,
which assumes that robots share a global map [11] or utilize
cross-robot loop closure to merge the local maps built by
individual robots [12]. However, merging local maps is both
time- and bandwidth-intensive and typically struggles to
handle dynamic changes in the environment. Recently, vision-
based methods have been developed using image registration
through feature matching [13], [14] or geometric alignment
[15], [16]. However, according to the real-world setting, the
maximum bandwidth designated for vehicle-to-everything
(V2X) communication is around 7.2 Mbps [17], which is
infeasible to share raw observations among robots. In addition,
there are non-overlapping views existing among multi-robot
observations, which may contains similar objects. A unified



framework to address all these challenges has not been well
addressed yet.

To address these challenges, we propose a novel hierarchi-
cal learning approach called Non-Overlap-Aware Egocentric
Pose Estimation (NOPE), which performs egocentric pose
estimation in a multi-robot team while identifying their
non-overlap views. We represent each observation as a
graph with nodes denoting objects associated with visual
features extracted from the large vision model and edges
denoting the spatial relationships of objects. Given the graph
representations, our NOPE approach integrates two levels of
robot learning into a hierarchical framework. The high-level
NOPE performs correspondence identification (CoID) based
on deep graph matching, which determines if two views are
overlapped. The low level of NOPE utilizes a position-aware
cross-attention network to capture the holistic context of
observations for egocentric pose estimation.

The key contribution of the paper is the introduction of a
novel approach to perform egocentric pose estimation while
satisfying the communication bandwidth and identifying non-
overlapping views. The specific novelties include:

• This work presents one of the first learning solutions for
multi-robot egocentric pose estimation with the aware-
ness of non-overlapping views. It enables a novel multi-
robot capability, allowing the ego robot to estimate the
poses of its teammates while detecting non-overlapping
views and satisfying the communication bandwidth
constraint, thus enhancing situational awareness.

• We introduce a novel hierarchical learning approach that
integrates a high-level deep graph matching network for
non-overlap detection and a low-level position-aware
cross-attention graph learning network for egocentric
pose estimation. Our approach achieves over 53% and
78.6% improvements on position and rotation estima-
tions, as well as achieves over 96x reduction in the
shared data size that meets the realistic communication
bandwidth constraint.

II. RELATED WORK

A. Collaborative Perception

Collaborative perception has gained significant attention in
recent research. From an application perspective, collaborative
object localization surpasses single-view localization by
leveraging multi-robot observations to consistently identify
the same objects [18], [19], [20]. This technique enhances
accuracy by fusing different viewpoints and addressing
occlusions. In addition, collaborative perception plays a
crucial role in trajectory forecasting [21], scene segmenta-
tion [22], [23], tracking, and object detection [24]. These
tasks benefit from associating multi-robot observations to
build a richer, more robust environmental understanding.
However, existing methods often assume that robots share
overlapping observations, such as connected vehicles meeting
at an intersection, which may not always be the case in more
dynamic and unstructured environments.

From a solution perspective, collaborative perception is
typically categorized into three approaches. First, early fusion

directly integrates raw sensor data from multiple robots
before processing [25]. While this method retains the most
information, it heavily depends on high-bandwidth communi-
cation, making it impractical in constrained network condi-
tions. Second, intermediate fusion seeks a balance between
information-sharing efficiency and computational cost by
transmitting compressed feature representations instead of raw
data. These methods include when2com [23], who2com [22],
and where2com [26], which selectively share relevant features
to optimize perception efficiency. However, these methods rely
on coordinate transformations based on GPS or pre-existing
maps to align observations, making them unreliable in GPS-
denied environments or dynamically changing robot teams.
Third, late fusion merges independent perception outputs
from multiple robots, often using post-processing techniques
like Non-Maximum Suppression (NMS) [27] and refined
matching for pose consistency [28]. While this approach is
robust to noise and requires minimal bandwidth, it ignores
most of the useful information in the raw data, which limits
its adaptability to unknown observations.

B. Multi-Robot Relative Pose Estimation

The existing methods of multi-robot relative pose estima-
tion can be divided into three categories, including GPS-based
methods, SLAM-based methods, and vision-based methods.
First, GPS-based methods rely on accurate GPS signals to
provide coordinate transformations for estimating relative
poses among robots, such as in UAVs [29] and connected
autonomous driving [30], [31]. However, GPS is often
unreliable in highly dynamic environments and somtimes
unavailable. Second, SLAM-based methods assume that the
entire robot team maintains a shared global map, with loop
closure detection used to estimate egocentric poses relative to
this map [11], [32], [33]. However, global maps and reliable
loop closures are not always available, especially in large-
scale or dynamically changing environments, significantly
limiting their applicability. Third, vision-based methods
estimate relative poses by registering two observations (e.g.,
RGB images or point clouds) through feature matching [13],
[14], [34], [35] or geometric alignment [15], [16], [36].
While these methods can provide high accuracy, they need
substantial communication costs, making them impractical
for real-time robotic applications with limited resources.

Recently, foundational models have been widely used as
strong priors to various applications due to the generalizability.
Foundation visual models, such as DINO [37] and CLIP [38],
have been extensively used to extract meaningful and general-
izable representations for relative pose estimation [39]. Even
though it achieves promising performance on egocentric pose
estimation, it still cannot address scenarios where the views
of two robots have no overlap.

III. APPROACH

A. Problem Definition

For each robot, we represent its observations as a graph
G(V,F , E). The node set V = {v1, v2, . . . , vn} contains
the objects observed by the robot, where vi ∈ V denotes



Fig. 2: Overview of our NOPE framework. NOPE represents the observation of each robot as a graph. The high-level NOPE
performs CoID based on LVM-based deep graph matching. The identified correspondences are used to detect the overlapping
views. The low-level of NOPE utilizes a position-aware cross-attention graph learning network to perform pose estimation
between the ego robot and its teammate robot.

the 3D position of the i-th detected object (e.g., a vehicle
or a pedestrian). Each object is associated with a visual
feature vector, denoted as F = {f1, f2, . . . , fn}, where fi
represents the visual feature vector of the i-th object. The
edge set E ⊆ V × V defines the spatial relationships of
objects, where nodes vi and vj are connected if through the
geometric rules of Delaunay triangulation, there exists a direct
connection relationship between i-th and j-th objects in the
geometric space. Consequently, the adjacency matrix A can
be derived, where Ai,j = ∥vi − vj∥2 if nodes vi and vj are
connected; otherwise, Ai,j = 0. The graph representation
can significantly reduce the size of data shared among robots,
thus satisfying the communication bandwidth constraints.

Given the graph representations G and G′ provided by a
pair of robots, we aim to address the problem of egocentric
pose estimation with the identification of non-overlapping
views:

1) Non-Overlap Detection: The capability of a robot team
identifying if their views are overlapped or not solely
based on their visual perception.

2) Egocentric Pose Estimation: The capability of a robot
to estimate the pose of its robot teammates with respect
to its own egocentric coordinates.

B. High-Level Correspondence Identification for Non-
Overlap Detection

Given the graph representations G and G′, we formulate
non-overlap detection as a graph matching problem, which
identifies the correspondences of objects in different views
to determine if two views are overlapped or not. First, we
utilize large vision models (LVMs), such as DINO [37] or
CLIP [38], to extract visual features of objects. Formally, it
is defined as

fi = Φ(I, vi), (1)

where Φ(·) denotes the LVM-based encoder, I is the observa-
tion of a robot, and vi denotes the i-th object observed by the
robot. Then, we employ a Transformer-based graph attention

network {hi}n = Ψ(F ,A) to compute node embeddings,
where hi denotes the embedding of the i-th object, which does
not just consider its own visual feature but also aggregating
its neighbors. Formally, we compute the linear projection of
the embedding of the i-th object as follows:

ql
i = Wl,qhi, kl

i = Wl,khi, vl
i = Wl,vhi, (2)

where ql
i, kl

i, and vl
i represent the query, key, and value

vectors of the i-th object at layer l. The trainable weight
matrices corresponding to these transformations are denoted
as Wl,q , Wl,k, and Wl,v . Notably, the initial input is defined
as h0

i = fi. The attention between pairs of nodes is computed
as follows:

αl
i,j =

exp((ql
i)

⊤(kl
j +Wl,eAi,j))√

d ·
∑

k∈N (i) exp((q
l
i)

⊤(kl
k +Wl,eAi,k))

, (3)

where N (i) denotes the set of neighboring nodes of vi, Wl
e

denotes a trainable weight matrix, and d denotes the length
of query vector. αl

i,j denotes the attention from the i-th
node to the j-th node, which is computed by comparing the
query of the i-th node and its neighbors. The adjacent matrix
Ai,k is added into the learning process to encode the spatial
relationships of nodes. Then, SoftMax is used to normalize the
attention. The final node embedding is computed as follows:

hl+1
i = LayerNorm

Wl,hhl
i +

∥∥∥M
m=1

∑
j∈N (i)

αl
i,jv

l
j

 ,

(4)
where the ∥ is the concatenation operation for M head
attention, LayerNorm denotes layer normalization operation
and Wl,h denotes a trainable weight matrix. The final node
embedding is computed by aggregating the central node
embedding and its neighborhood node embeddings weighted
by attention coefficients. Multi-head mechanism generates a
richer representation of the embedding by capturing different
embedding spaces and layer normalization standardizes the
embeddings to improve training stability and convergence.



Given the node embeddings hL
i and hL

j from the final layer
L, we compute pairwise correspondences between graphs G
and G′. A similarity matrix S is computed as:

Si,j = hL
i (h

L
j )

⊤, (5)

where S ∈ Rn×m represents the similarity matrix between
two graphs containing n and m objects, respectively. To
improve the robustness of CoID, a graph difference matrix
D is to update the similarity matrix S, which is defined as:

D =
(
S⊤Ψ(J,A)−Ψ(S⊤J,A′)

)⊤
, (6)

where J ∈ Rn×r is a random matrix. According to graph
consensus theorem [40], when the graphs G and G′ represent
the same graph, then S⊤Ψ(J,A) = Ψ(S⊤J,S⊤AS) =
Ψ(S⊤J,A′), thus Di,j = 0. The larger the difference
between two graphs, the large values in the difference matrix
Di,j = 0. The updated similarity matrix is defined as:

Ŝi,j = ϵ ((Si,j +Di,j) , τ) , (7)

where Ŝ ∈ Rn×m represents the final similarity matrix
between two graphs. ϵ(·) is an indicator function that outputs
1 when Si,j +Di,j ≥ τ , otherwise 0. τ denotes a threshold.
The final correspondences of objects are identified as follows:

Y = argmaxY

n∑
i=1

m∑
j=1

Ŝij ·Yij (8)

s.t.

m∑
j=1

Yij ≤ 1,

n∑
i=1

Yij ≤ 1

where Y ∈ {0, 1}n×m denotes the identified correspondences
of objects observed by two robots, with Yi,j = 1 denoting
the i-th object observed by the ego robot and the j-th
object observed by its teammate are the same. The final
correspondences are optimized by maximizing the overall
similarity given the similarity matrix Ŝ. The constraint enforce
that one object can at most have one corresponding object in
the other observation, thus allowing to remove non-covisible
objects that can only be observed by one robot. We use the
Hungarian algorithm [41] to solve this optimization problem.

Given the correspondence matrix Y, we determine whether
there exists an overlap between two observations. Specifically,
if the sum of all elements in

∑
i,j Y = 0, it indicates that

there is no overlap between two robots’ views due to the lack
of correspondences. If

∑
i,j Y ≥ 1, it implies an overlapping

views between a pair of robots. As non-overlapping views
significantly affect the pose estimation accuracy due to the
lack of correlated contextual information, we only perform
egocentric pose estimation when two observations are decided
to be overlapping. We train the high-level CoID network with
the following loss function:

Lhigh =

∑
i,j(Ŝi,j −Y∗

i,j)

n ·m
, (9)

where Y∗ ∈ Rn×m denotes the ground truth correspondence
matrix. If the i-th object in one observation and the j-th
object in the other observation are the same, then: Y∗

i,j = 1,

otherwise 0. The correspondence is optimal when the loss is
minimum.

C. Low-Level Position-Aware Graph Learning for Egocentric
Pose Estimation

Once two observations are decided to be overlapping
given the high-level CoID results, we design a low-level
network based on position-based cross-attention mechanism
to estimate the relative poses between the ego robot and
its teammates. To capture the holistic information of the
observation for egocentric pose estimation, we compute
the graph-level embeddings that captures the whole visual-
spatial information of the observation as a single vector,
meanwhile considering positional cues of node embeddings
and the correlation between two observations, to improve the
expressiveness of graph embeddings.

First, we explicit encode the order of node embeddings as
Pi = U[i, :], where Pi denotes the position embedding of
the i-th object in observations G and U denotes learnable
embedding matrices. During training, the parameters of U
are optimized to capture meaningful positional information,
allowing the model to learn an effective representation of
position embeddings for each object in the sequence. By
incorporating position embeddings, our model gains the ability
to discern the relative positions of objects in observations,
thereby enhancing the accuracy of egocentric pose estimation.

Second, we compute a set of node embeddings H of graph
G by concatenating the node embeddings {hi}n and the
further update it by combining the position embeddings:

Ĥi = Hi +Pi. (10)

Third, we use cross-attention mechanism to capture the
attention of the relevant objects between two observations with
partial overlap, thus improving the egocentric pose estimation.
Formally, given the sets of node embeddings Ĥ and Ĥ′ of
graphs G and G′, we compute the cross attention to capture
the correlations of nodes embeddings as follows:

CrossAtt(Ĥ, Ĥ′) = SoftMax

(
ĤWQ(Ĥ′WK)⊤√

d

)
, (11)

where WQ, WK and WV denotes the trainable weight
matrices. By comparing the similarity between the sets of
node embeddings Ĥ and Ĥ′, the cross attention between
two observations G and G′ is computed through a SoftMax
function. Then we update the set of node embedding as
follows:

Hout = LayerNorm(Ĥ+MLP(
∥∥∥M
m=1

CrossAttn(Ĥ, Ĥ′)m ·ĤWV ),

(12)
We use multi-head mechanism followed by a MLP to update
the set of node embeddings based on cross attention. Then the
updated graph embedding and the original graph embedding
Ĥ are added up and pass through a layer normalization to
generate Hout.

Finally, we employ an attention gate aggregation operation
to compute the graph-level embeddings. Specifically, we
apply self-attention to Hout, which captures the weighted



relationships between nodes by considering the interactions
and dependencies within the node embeddings.

Hweight = SoftMax(
HoutWQ(HoutWK)⊤√

d
)HoutWV , (13)

Then, we pass Hweight through a multi-layer perceptron (MLP)
followed by a SoftMax function to obtain the attention gate
scores g.

g = SoftMax(MLP(Hweight)), (14)

where g denotes the attention gate score, which captures the
importance of each node for graph embedding. The graph
embedding is computed by pooling node embeddings Hout,i
weighted by the attention gate scores gi.

hpooled =

n∑
i=1

gi ·Hout,i, (15)

where hpooled denotes the graph embedding of the graph
G, which captures all visual-spatial cues of nodes while
considering the correlation of observations provided by the
ego robot and its collaborator. Given the graph embedding,
we estimate the egocentric pose as follows:

(p̂, R̂) = MLP(hpooled). (16)

where p̂ and R̂ denote the position and rotation of the
collaborator providing observation G′. The egocentric pose of
an ego vehicle’s collaborator is estimated from the position-
aware cross-attention graph embedding hpooled followed by
a MLP. The loss function to train the low-level egocentric
pose estimation is defined as follows:

LLow =

Lpos︷ ︸︸ ︷
∥p̂− p∥22 +

Lrot︷ ︸︸ ︷
2 · ∥R̂−R∥22 · (4− ∥R̂−R∥22) . (17)

The first term denotes the position loss which is compute
by minimizing the Euclidean distance between the predicted
position p̂ and the ground truth position p. The second term
denotes the loss of rotation estimation with respect to the
ego robot coordinates. It is based on the chordal squared
loss [39] to measure the difference between the quaternion-
based rotation estimation R̂ and the ground truth R.

IV. EXPERIMENTS

A. Experimental Setup

We conducted experimental evaluation in both high-fidelity
simulation and the real world. In the simulation, we utilize
both CARLA [42] and SUMO [43] to create five connected
autonomous driving (CAD) scenarios. In each scenario, a pair
of connected vehicles are deployed. The behaviors of vehicles
and pedestrians were controlled by SUMO in accordance with
real-world rules, such as stopping at red lights and yielding to
pedestrians. For each vehicle, it is equipped with a front-facing
RGB-D camera and a Global Navigation Satellite System
(GNSS) sensor. In the real-world application, we utilize the
multi-modal autonomous driving dataset MARS [44], which
was collected by a fleet of autonomous vehicles operating
within a specific geographic area. Each vehicle follows its

own route, with different vehicles potentially appearing in
nearby locations. Each vehicle was equipped with one LiDAR,
three narrow-angle RGB cameras, three wide-angle RGB
fisheye cameras, one IMU, and one GPS. All sensor data
were sampled at 10Hz to ensure synchronization.

In the simulation, we collect a total of 30,277 data instances,
of which 27,247 were used for training and 3,030 for testing.
Each data instance includes a pair of RGB-D images captured
from different perspectives by two connected vehicles. The
ground truth of object correspondences is provided by the
CARLA simulation and the ground truth of positions and
orientations of connected vehicles is provided by the GNSS
sensor. In the real-world application, we select 201 data
instances. Each data instance consists of a pair of RGB
images captured from different perspectives by two connected
vehicles, along with the positions and orientations of the
vehicles provided by GPS.

For graph construction, we use YOLOv5 [45] to detect
objects in each vehicle’s view and extract visual features
as node representations. Delaunay triangulation generates
edges and DepthAnythingV2 [46] estimates depth information,
which is used to compute edge attributes based on object
locations. In simulation CAD, vehicle positions and rotations
are represented in XYZ-pitch-roll-yaw. In real-world CAD,
they are in XYZ format with quaternion rotation.

In the specific implementation details, we implemented the
Transformer-based graph attention etwork Ψ using PyTorch
and PyG [47]. In this network, we set the number of network
layers as L = 2, with the number of heads as heads = 4,
and all dimensions d = 256. Additionally, the edge feature
dimension is set to dim = 1. After each attention layer, we
applied a dropout with a probability of 0.5. For the MLP with
two linear layers, each layer has a dropout probability of 0.2.
In the position-aware cross-attention network, the number of
network layers is L = 4, with heads = 4, and d = 256. The
attention gate aggregation network has L = 1 layers, with
heads = 4, and d = 256. In all experiments, we used Adam
as the optimizer [48], with a learning rate of 0.001. We ran
the training for 150 epochs.

We implement a baseline method NOPEhigh that just use
the high-level network to evaluate the CoID performance.
In addition, compare our method with six existing meth-
ods, including: 1) GCN-GM [49] aggregating visual-spatial
information of objects and their neighborhoods via spline
kernels for graph matching, 2) DGMC [40] identifying
initial correspondences based on visual similarity and graph
matching consensus for CoID, 3) BDGM [50] performing
deep graph matching under a Bayesian framework to re-
move invisible objects given the quantified correspondence
uncertainty, 4) DMGM [30] considering visual-spatial cues,
matching consensus and uncertainty of correspondences for
CoID, 5) SuperGlue [34] optimizing feature matching as
a differentiable optimal transport problem, which leverages
Transformer-based graph neural networks to estimate relative
poses between two graphs, 6) CoViS-Net [39] is a foundation
model for egocentric pose prediction, which utilizes DINOV2
as encoder on individual robots and generates bird-eye-



TABLE I: Quantitative results of egocentric pose estimation
in both simulation and the real world based on metrics of
position error (PE), rotation error (RE) and package size (PS).
The improvements is computed w.r.t CoViS-Net [39]

Method CAD Simulation Real World PS ↓
PE ↓ RE ↓ PE ↓ RE ↓

GCN-GM [49] 20.32 3.641 19.77 5.541 36.7KB
DGMC [40] 20.17 3.120 18.15 4.620 36.2kB
BDGM [50] 19.35 2.944 17.81 4.357 36.5KB
DMGM [30] 18.69 2.256 17.28 4.621 35.1KB

SuperGlue [34] 18.80 2.406 15.03 3.679 2.3MB
CoViS-Net [39] 13.92 2.037 14.52 3.120 0.75MB

NOPE 6.42 0.435 13.63 2.226 27.0KB
Improvements(%) 53.87 78.64 6.32 28.65 96.48

view map to encode poses of a robot team. As GCN-GM,
DGMC, BDGM and DMGM do not have the capability
of estimating poses, we use learning-free pose estimation
method RANSAC [51] and essential matrix decomposition
to estimate the poses given the correspondences identified.

We use the following metrics to evaluate our NOPE,
including 1) Precision is defined as the ratio of correctly
retrieved correspondences to the retrieved correspondences,
2) Recall is defined as the ratio of correctly retrieved
correspondences to the ground truth correspondences, 3) F1-
Score, which evaluates the overall performance of the CoID
method, is calculated as F1= 2×Precision×Recall

Precision+Recall , 4) Position Error
(PE) measures the Euclidean distance between the estimated
and the ground truth position, 5) Rotation Error (RE) is
defined as the geodesic distance [39] between the estimated
rotation and the ground truth position, 6) Packet Size ((PS))
refers to the size of the data transmission packets shared
between connected vehicles, to evaluate communication
efficiency, 7) Non-Overlapping Detection Accuracy (NDA))
is defined as the ratio of correctly detected non-overlapping
observation pairs to the total number of observation pairs, to
evaluate accuracy of non-overlapping identification.

B. Results over Connected Autonomous Driving Simulations

The CAD simulation includes a lots of challenges to
perform egocentric pose estimation, including highly dynamic
street objects (e.g., pedestrians and vehicles) with ambiguous
visual appearance caused by occlusion and long-distance
observation, a large number of non-covisible objects, limited
communication bandwidth, as well as non-overlapping views
between pairs of connected vehicles. We run our approach on
a Linux machine with an i7 32-core CPU and 16G memory.
The average execution time is around 20Hz.

As shown in Figure 3(a), for CoID, we can clearly see that
our NOPE outperforms existing methods BDGM and DMGM.
This is because of the integration of LVMs and addressing
non-covisible objects in NOPE. For pose estimation, the
keypoint-based methods, SuperGlue and CoVisNet, can not
well address the ambiguity in visual appearance of objects
caused by long-distance observation and low resolution, which
leads to poor pose estimations. Moreover, as none of these
existing method can address non-overlapping views, NOPE

achieves the best performance of egocentric pose estimation,
which indicates the importance of addressing visual ambiguity,
non-covisiblity and non-overlapping views for egocentric pose
estimation in collaborative perception.

The quantitative results are shown in Table I. We ob-
serve that GCN-GM, DGMC, BDGM, and DMGM exhibit
large pose errors. This is primarily because they focus
on correspondences of objects and rely on RANSAC for
pose estimation, which requires a large number of correct
correspondences of objects. SuperGlue and CoVisNet achieve
better performance by learning keypoint-based matching and
pose estimation. However, these methods are highly sensitive
to non-overlapping views with similar visual features. NOPE
outperforms CoVisNet, the second-best method, by 53.9% in
position estimation and 78.6% in rotation estimation, while
requiring only 1/96 of the data size for sharing.

TABLE II: Quantitative results of CoID in the simulation CAD
based on metrics of precision, recall and non-overlapping
detection accuracy (NDA).

Method Precision ↑ Recall ↑ F1-score ↑ NDA ↑

GCN-GM [49] 0.5001 0.6391 0.5611 0.6539
DGMC [40] 0.4736 0.6425 0.5453 0.6857
BDGM [50] 0.6817 0.6097 0.6437 0.7239
DMGM [30] 0.7859 0.8278 0.8063 0.7561

NOPEhigh 0.8224 0.8429 0.8325 0.8039

We further evaluate NOPE’s high-level CoID for non-
overlapping view detection in CAD simulation. Table II
indicate that GCN-GM and DGMC suffer from low recall
due to their inability to handle non-covisible objects. BDGM
prioritizes precision at the cost of recall based on the threshold-
ing on the correspondence uncertainty but it uses hand-craft
features for graph matching. By integrating LVMs and address
non-covisible objects, NOPE surpasses all existing methods
on all metrics with the improvements of 4.6%, 1.8%, and
3.2% on precision, recall and F1 score respectively. According
to the metrics of NDA, we can see that our method is able
to identify over 80% non-overlap views, which outperforms
all the existing methods, which indicates the importance of
identifying correct correspondences for the detection of non-
overlapping views.

C. Results over Real-World Connected Autonomous Driving

The real-world connected autonomous driving scenario
covers the challenges like low-resolution observations, limited
communication bandwidth, non-covisible objects and non-
overlapping views between connected vehicles. In addition,
we do not fine tune NOPE with the real-world data and
directly use the model learned from the CAD simulation to
evaluate the generalizability of NOPE.

The qualitative results shown in Figure 3(b) illustrates that
other methods shows significant errors in complex and noisy
real-world scenarios in terms of both CoID or egocentric pose
estimation. In addition, NOPE still outperforms the existing
methods without the needs of fine tuning, which indicates its
generalizability to real-world applications.
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Fig. 3: Qualitative results on CoID and egocentric pose estimation from both simulation and real-world scenarios. The first
row illustrates identified correspondences between the ego robot and its collaborator’s observations. The second row compares
the estimated and ground truth poses of the collaborator in the ego vehicle’s coordinate frame.
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Fig. 4: Comparisons of CoID for non-overlap detection.

Table I provides the quantitative results of egocentric
pose estimation. We can observe that NOPE continuously
maintains a low pose error compared with the second best
method CoViS-Net. Although its rotation error is 2.226
which slightly worse in the real-world scenario compared to
its performance in the simulation, likely due to sensitivity
to dynamic lighting, it still outperforms other methods.
Furthermore, compared to feature-matching-based methods
like SuperGlue and CoViS-Net, NOPE achieves the best
results under realistic communication bandwidth constraints.

D. Discussion

Non-Overlapping Detection: Figure 4 demonstrates that
NOPE can detect the non-overlapping views by making
decisions on the identified correspondences. When there is no
identified correspondences of objects, NOPE determinate that
two observations are non-overlapping, thus will not estimate
the poses between two views. Notably, SuperGlue and CoViS-
Net rely on the keypoint feature matching, which can not
work well with non-overlapping observations, particularly
in different observations with similar visual context (e.g.,
traffic signs or buildings), which emphasizes the importance
of CoID for non-overlapping view identification.

Fig. 5: Analysis of τ .

Hyperparameter Analysis:
Figure 5 shows the performance
of our high-level CoID for non-
overlapping detection with the
variance of threshold τ , defined
in Eq. (7). We can see that the
highest non-overlap detection ac-
curacy is achieved when τ is in
the range of [0.6, 0.7] with small fluctuation. Similarly, the
F1 score reach to the highest when τ is in the range of
[0.6, 0.7], which indicates positively correlation between the
non-overlapping view detection and CoID.

V. CONCLUSION

In this paper, we propose NOPE as a novel method
to enable non-overlap-aware egocentric pose estimation
for collaborative perception in multi-robot systems. NOPE
integrates high-level deep graph matching to detect the
overlap between two observations based on the identified
correspondences, and low-level position-aware cross-attention
network performs egocentric pose estimation. We conduct
extensive experiments to evaluate NOPE in both high-fidelity
simulation and real-world scenarios. The results demonstrate
that NOPE enables new capability of non-overlap-aware
egocentric pose estimation and significantly outperforms
existing methods on bandwidth cost, non-overlap detection
and egocentric pose estimation.

Our approach has several limitations that open avenues
for future research. First, NOPE cannot estimate egocentric
poses when observations are completely non-overlapping. A
possible solution is to integrate Bayesian filters to estimate
relative poses, using NOPE’s outputs as corrections to refine
these estimates. Second, NOPE does not ensure global pose
consistency for teams larger than two. Future work could
explore distributed consensus algorithms to enable large robot
teams to collaboratively achieve consistent pose estimation.
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